Computer Simulation of Recrystallization in Non-uniformly Deformed Metals

نویسنده

  • A. D. ROLLETT
چکیده

The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation [F = 1 exp( kt)“] for nucleation and growth transformations works very well for most solid state transformations but fails regularly when applied to recrystallization of plastically deformed metals. Under conditions of near constant growth rate, a high exponent (n 2 3) is predicted but low exponents (n < 2) are typically measured. Another common observation is that the slope of a JMAK plot, from which the exponent is inferred, decreases as recrystalli~tion proceeds. Analysis of the published data suggested the h~thesis that the failure of the JMAK theory as applied to recrystallization is because of the lack of uniformity of the stored energy of plastic deformation on the grain size scale. This hypothesis was tested by use of Monte Carlo simulations of the type previously used successfully to model grain growth and recrystallization. The earlier simulations of recrystallization used uniform stored energies whereas the simulations presented here varied the stored energy from grain to grain. The kinetics were plotted on JMAK plots which exhibited low and varying exponents closely resembling experimental data. Specific simulations were performed to test the basic JMAK assumption that makes a correction for the effect of impingement under conditions of random nucleation, namely dF/dF, = (1 F), where F is the actual volume fraction and F, is the extended volume fraction-that which would obtain in the absence of impingement and overlap between new grains. It was found the assumption is accurate under conditions of uniform stored energy. With non-uniform stored energy, however, the correction underestimated the effect of impingement by a factor that rapidly increased (to over two orders of magnitude) during recrystallization. R~um~~~quation classique de Johnson, Mehl, Avrami et Kolmogorov (JMAK), [F = 1 exp( -kt )“], pour les transformations par germination et croissance conveient tres bien pour la plupart des transformations de l’btat solide, mais elle ichoue regulierement quand on l’applique a la recristallisation des mitaux deform&s plastiquement. Dans des conditions de vitesse de croissance a peu pris constante, elle predit un exposant Clevt (n > 3) alors que l’on observe typiquement des valeurs basses (n < 2). On observe aussi couramment que la pente dune courbe JMAK, a partir de laquelle on determine l’exposant, decroit au course de la recristallisation. Une analyse des rbultats publib laisse penser que la raison de l’&chec de la th6orie JMAK, lorsqu’on l’applique a la recristallisation, est le manque d’uniformitt, a l’khelle du grain, de l’inergie de deformation plastique emmagasin~e, Nous avons test& cette hypoth~~ a l’aide de simulations de Monte Carlo du mdme type que celles qui avaient eti utilisces precedemment avec succ& pour modeliser la croissance des grains et la recristallisation. Les premieres simulations de recristallisation utilisaient des energies emmagasinees uniformes, alors que les simulations que nous presentons dans cet article font varier l’energie emmagasinee d’un grain a l’autre. La cinetique tvolue selon des courbes JMAK dont les exposants, peu eleves et variables, correspondent bien aux resultats exptrimentaux. Nous avons r&alist des simulations specifiques pour verifier si l’hypothese JMAK de base corrige l’effet de rencontre des grains dans des conditions de germination aleatoire, c’est-a-dire si dF/dF, = (1 F), oti F est la fraction volumique reelle et F, la fraction volumique au scns large, c’est-a-dire celle que l’on obtiendrait en l’absence de rencontre et de chevauchement de nouveaux grains. L’hypothbe est exacte dam des conditions d’energie emmagasinee uniforme. Cependant, pour une energie emmagasinee non uniforme, la correction sous-estime l’effet de la rencontre des grains d’un facteur qui augmente rapidement (jusqu’a plus de deux ordres de grandeur) pendant la recristallisalion. Zusamm~fa~ng-Die klassische Johnson-Mehl-Avr~i-Kolgomorov-Gleichung (JMAK) [F = 1 exp( -kt)“] fur Keimbildungsund Wachstumsumwandlungen beschreibt die me&en Festk~r~rumwandlung sehr gut, ist aber regelmlgig fehlerhaft, wenn sie auf die Rekristallisation von plastisch verformten Metallen angewendet werden ~011. Unter Bedingungen nahezu konstanter Wachstumsraten wird ein hoher Exponent (n > 3) vorausgesagt, aber kleine (n < 2) werden immer gemessen. Eine andere allgemeine Beobachtung betrifft die Steigung in der JMAK-Auftragung, aus der der Exponent folgt: diese Steigung nimmt mit vorwartsschreitender Rekristallisation ab. Eine Analyse der veriiffentlichten Daten legt nahe, da8 diese Fehlerhaftigkeit der JMAK-Theorie aus der ungleichen Verteilung der gespeicherten Energie in den Kornern folgt. Diese Hypothese wurde mit Monte-Carlo-Simulationen der Art, wie friiher erfolgreich fiir das Model1 des Ko~wachstums und der Rekristallisation benutzt, gepriift. Die fruheren Simulationen der Rekristallisation benutzten gleichmLl3ig gespeicherte Energien, wohingegen die hier vorgelegten unterscbiedliche gespeicherte Energien in den einzelnen Kiirnern berticksichtigen. Die in den JMAKDiagrammen sichtbare Kinetik zeigte niedrige und unterschiedliche Exponenten, welche den experimentellen Ergebnissen Ihnelten. Spezielle Simulationen wurden durchgefiihrt, urn die Grundannahme der

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isothermal Recrystallization Behavior of Cold-deformed Martensite in an Ultra-low-carbon Microalloyed Steel

One of the most promising ways to produce a grain-refined microstructure in some steel materials is the thermomechanical processing route of subcritical recrystallization annealing of a cold-deformed martensite structure. In the present study, the microstructural evolutions and the associated recrystallization kinetics under various subcritical annealing heat treatment conditions are explored i...

متن کامل

Recrystallization texture during ECAP processing of ultrafine/nano grained magnesium alloy

An ultrafine/nano grained AZ31 magnesium alloy was produced through four-pass ECAP processing. TEM microscopy indicated that recrystallized regions included nano grains of 75 nm. Pole figures showed that a fiber basal texture with two-pole peaks was developed after four passes, where a basal pole peak lies parallel to the extrusion direction (ED) and the other ~20° away from the transverse dire...

متن کامل

Hot Deformation Behavior of Ni80A Superalloy During Non-Isothermal Side Pressing

In the present study, the microstructural changes of a Nickel based superalloy Nimonic80A during a non-isothermal deformation were studied. Therefore, microstructure evolutionduring hot side pressing test was predicted with combined methods of finite element analysis andprocessing map of the material. The predicted results were validated through experimentalmicrostructural studies. The results ...

متن کامل

Monte Carlo Simulation for Recrystallization in If Steels, Combined with Oim Microstructure

Monte Carlo (MC) simulations for recrystallization were performed using OIM (Orientation Image Microscopy) data sets to define the initial microstructures. Two types of OIM data sets were used as input to the simulations. One type was measured on a warm-rolled interstitial-free (IF) steel sheet. The results were strongly affected by the assumptions used to estimate the stored energy, which is t...

متن کامل

Computer Simulation of Equidxed Eutectic Solidifiction of Metals

In the present work, the solidification process was simulated in both macroscopic and microscopic scales. Two-dimensional heat transfer equation for conduction was applied for macroscopic modeling using enthalpy formulation and finite element method. In order to decrease execution time and/or memory capacity in finite analysis, skyline mathematical technique was adapted. The microenthalpy metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002